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Abstract
The analytic structure in the vicinity of three coalescing eigenvalues (EP3) of a
matrix problem is investigated. It is argued that the three eigenfunctions—also
coalescing at the EP3—invoke a true chiral behaviour in the vicinity of the EP3
and that they can be related to a three-dimensional helix. The orientation of the
helix depends on the distribution of the widths of the three levels in the vicinity
of the EP3.

PACS numbers: 03.65.Vf, 03.65.Yz, 02.30.−f, 02.40Xx, 02.10.Yn

Introduction

There is substantial literature from the past decade relating to exceptional points [1], i.e. points
where two eigenvalues of an operator coalesce giving rise to a square-root singularity in the
spectrum [2]. These singularities are encountered in virtually all physical problems associated
with parameter-dependent eigenvalues. They have been discussed in mechanical problems [3],
optics [4], for bound states [5] and resonances [6, 7] in quantum mechanics and atomic physics
[8, 9]. The mutual influence of neighbouring exceptional points upon the phase behaviour
of the associated wavefunctions is dealt with in [10]. Exceptional points also play a crucial
role in quantum phase transitions [11]. The chiral behaviour of the eigenfunction [12] as
well as effects of time-reversal symmetry breaking are discussed in [13, 14]. Experimental
manifestations including chiral behaviour have been achieved with microwave cavities [15] and
coupled oscillators in electronic circuits [16]. A more recent mathematical exposé investigates
exceptional points in the context of projective Hilbert spaces [17] and extensive numerical
work applied to quantum dots is presented in [18], while a connection to PT -symmetric
Hamilton operators [19] is found in [20]. In fact, it is established in [21] that, for a pseudo-
Hermitian PT -symmetric Hamiltonian, the onset of spontaneous symmetry breaking by the
wavefunction happens just at an exceptional point.

In many of the papers quoted above, the notation EP was used denoting the simplest
exceptional point where two levels coalesce at a square-root branch point. To distinguish it
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from the more involved coalescence of three levels being the subject of the present paper,
we here denote the simple EP by EP2 and by EP3 the specific situation where the three
levels coalesce. While a three-fold diabolic point is mentioned in an earlier experimental
paper [22], a genuine investigation of three truly coalescing levels has not—to the best of our
knowledge—been dealt with in the literature. We note, however, that EPs of higher order have
been implicitly encountered as the coalescence of two or more EP2 in a recent investigation
of a complex WKB analysis [23].

Three levels coalescing

The situation of three or more levels coalescing does not seem to have been investigated
in great detail, the reason being that there are too many parameters needed to enforce such
a higher order coalescence. In fact, while two real parameters (one complex parameter)
suffice to invoke the coalescence of two levels, for N levels coalescing (N2 + N − 2)/2 real
parameters are needed considering complex symmetric matrices. For N = 3 it means that
three additional real parameters have to be chosen judiciously to invoke the coalescence of
three levels in the complex plane of some complex parameter. Since, as seen below, the
coalescence of just three levels has particular attractive features—for the coordinate systems
used conventionally a distinction between left and right seems possible—the challenge to
implement an experimental arrangement may just fall within reach of realization. To simplify
the discussion, we in this paper consider complex symmetric matrices. This is of course
not the general situation; in fact, one experimental realization using electronic circuits
[16] would yield non-symmetric matrices. A forthcoming paper along those lines is in
preparation.

We recall that the wavefunction at a usual EP2 has—for complex symmetric matrices—a
fixed phase relationship of its components [15] that can be interpreted as a form of chirality
[12]. Considering two coupled dissipative oscillators, a particular EP2 specifies uniquely
which of the two oscillators is leading by the phase π/2. In this particular mode, that is at
the EP2, the two oscillators thus specify an orientation in one-dimensional space by simply
placing them on a line and using the convention that an arrow points from the oscillator with
the leading phase to the one with the lagging phase [16].

When three levels are coalescing the structure becomes richer in comparison with that
of an EP2, even though much of it turns out to be an expected generalization. Choosing
some convenient complex parameter (denoted by λ below), the EP3 is the point where
three levels are analytically connected by an algebraic branch point of third order; to
distinguish it from a traditional three-fold degeneracy (as it can occur for Hermitian matrices)
we prefer to say, three eigenvalues coalesce. If any of the three additional parameters,
that were chosen to invoke the third-root branch point, is now perturbed while keeping
all other parameters including λEP3 fixed, three eigenvalues will pop out in the energy
plane from the EP3 (just as they do when only λ is moved away from λEP3). In turn,
the EP3 can be seen as a coalescence of two EP2 as the three eigenvalues—obtained
from the perturbation—are still analytically connected. In fact, searching for singularities
in the chosen parameter λ—using the perturbation mentioned above—one finds two EP2
that sprout from the original EP3 in the λ-plane. Some other parameters could then be
used to force a coalescence of the two EP2 into a new (shifted) EP3. We stress that
the analytical connectedness is crucial for all properties of an EP3; while three levels
were considered in [18, 22], the three levels are not connected analytically as they do not
interact.
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Figure 1. The two basic positions of the three levels for small |λ − λc| in the lower energy plane.
The drawing is schematic in that the imaginary parts of two energies are equal: tilting either
triangle by less than 30◦ in either direction still represents the two specific cases as discussed in the
text. The lagging (120◦) and leading (−120◦) phases of the respective wavefunctions are indicated
relative to the most left point (the smallest Re(E)). The EP3 lies in the centre of the equilateral
triangles.

Of course, the simplest form of an operator giving rise to three levels coalescing is a
three-dimensional matrix. Let us assume that any suitable triple of the parameters in

H0 =
⎛
⎝e1 0 0

0 e2 0
0 0 e3

⎞
⎠ and H1 = U

⎛
⎝o1 0 0

0 o2 0
0 0 o3

⎞
⎠ UT , (1)

with U a general three-dimensional orthogonal matrix parametrized by three angles, is so
chosen that the full problem

H0 + λH1 (2)

has an EP3. If the parameters are all real (except for λ), the EP3 will occur at complex conjugate
values of λ. Denoting such point by λc, the three levels are connected by a third-root branch
point (see the appendix) and there exists the expansion

Ej(λ) = Ec +
∞∑

k=1

ak(
3
√

λ − λc)
k, (3)

where the label j = 1, 2, 3 is specified by the value of 3
√

λ − λc on the first, second or third
Riemann sheet in the λ-plane. More explicitly, (3) can be written

Ej(λ) = Ec +
∞∑

k=1

ak(
3
√

|λ − λc| exp(i arg(λ − λc)/3 + 2iπ(j − 1)/3))k, j = 1, 2, 3.

As a consequence, for small values of |λ − λc| the three complex energies Ej(λ) form
an equilateral triangle in the energy plane. The orientation of the triangle depends on
arg(λ − λc) and the parameters of the specific problem (1), which determine the complex
coefficient a1 in (3). Generically, we can order the energies according to their real parts,
that is Re(E1) < Re(E2) < Re(E3) (we dismiss the possibility that two real parts are
equal as non-generic). In the energy plane we distinguish two different cases of orientation,
depicted schematically in figure 1: in (a) Im(E2) is smaller than the imaginary parts of the
other two energies—in other words it has the largest width (recall that all the energies have
negative imaginary parts), whereas in (b) Im(E2) has the largest imaginary part (the smallest
width).

Now we turn to the eigenfunctions. Three eigenfunctions coalesce, in other words they
become aligned when approaching the EP3. There are the expansions

|ψj(λ)〉 = |ψEP3〉 +
∞∑

k=1

( 3
√

λ − λc)
k|φk〉. (4)
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As in (3), the labels j = 1, 2, 3 are specified by the Riemann sheet of the third root, that is (4)
can be written more explicitly

|ψj(λ)〉 = |ψEP3〉 +
∑
k=1

( 3
√

|λ − λc|)k
∣∣φj

k

〉
,

with
∣∣φj

k

〉 = exp(i(arg(λ−λc) + 2(j − 1)π)k/3)|φk〉. For any λ �= λc the eigenfunctions form
the usual bi-orthogonal complete system, namely,

〈ψ̃ i(λ)|ψj(λ)〉 = Nj(λ)δi,j , (5)

∑
j

|ψj(λ)〉〈ψ̃j (λ)|
〈ψ̃j (λ)|ψj(λ)〉 = I. (6)

It can be shown (see the appendix) that the scalar product (5) vanishes as

Nj(λ) ∼ ζ · (λ − λc)
2
3 for λ → λc (7)

and similarly

〈ψ̃j (λ)|ψEP3〉 ∼ η · (λ − λc)
2
3 for λ → λc (8)

with some constants ζ, η.
It should be noted that the structure of the eigenvectors at an EP3 is slightly more involved

as there are three vectors that coalesce into |ψEP3〉 when λ → λc. In view of result (8),
expansion (4) implies that not only

〈ψ̃EP3|ψEP3〉 = 0, (9)

but also

〈ψ̃EP3|φ1〉 = 0,

where |φ1〉 is the first-order term in (4) associated with the first power of 3
√

λ − λc.
In contrast to an EP2, the eigenfunction |ψEP3〉 does not bear a chiral behaviour at an

EP3. It is rather in its immediate neighbourhood where the chiral phase structure is revealed.
Similar to the reasoning in [12], an expansion of |ψEP〉 in terms of the normalized basis

|χj (λ)〉 = |ψj(λ)〉√
〈ψ̃j (λ)|ψj(λ)〉

(10)

provides the phase relation of interest. Indeed, while it is always possible for λ �= λc to write
(identically in λ)

|ψEP3〉 =
3∑

j=1

cj (λ)χj (λ), (11)

we find for the leading term for λ → λc either⎛
⎝c1(λ)

c2(λ)

c3(λ)

⎞
⎠ ∼ ξ1

3
√

|λ − λc|
⎛
⎝ 1

e2iπ/3

e−2iπ/3

⎞
⎠ (12)

or ⎛
⎝c1(λ)

c2(λ)

c3(λ)

⎞
⎠ ∼ ξ2

3
√

|λ − λc|
⎛
⎝ 1

e−2iπ/3

e2iπ/3

⎞
⎠ (13)
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with ξ1 and ξ2 some complex constants; what matters are the quotients of the components
cj (λ), they are given just by the phases exp(±2iπ/3). Recall that the normalized state vectors
χj (λ) tend to infinity as 1/ 3

√
λ − λc when λ → λc thus yielding a finite expression for |ψEP3〉

in (11). The relative phases given in (12) and (13) are due to the analytic structure of the
third-root branch point and are thus independent of a particular basis. Note that∑

j

cj (λ)2 ≡ 0

in accordance with (9). We mention that for non-symmetric matrices (12) and (13) have to be
modified. In the case of electronic circuits (see also [16]) the phase relations remain.

The essential point is now the unambiguous association of the phases as given in (12)
and (13) with the complex values of the energies in the vicinity of the EP3, that is with the
frequencies and their widths. This association is illustrated in figure 1. Choosing as reference
point the eigenvector of the energy with the smallest real part (frequency), then the eigenstate
of the next higher frequency has a lagging phase of 120◦ if (and only if) its width is larger than
the other two; the phase of the eigenstate with the largest frequency would then be leading
by 120◦. In turn, if the width of the middle frequency is smallest, the role of the leading
and lagging phase is interchanged among the two states with the larger frequencies. This
result is demonstrated analytically in the following section in a specific setting and confirmed
numerically in numerous general examples.

The strict phase relations of the eigenvectors associated with the positions of the
frequencies and widths of the three levels allow the interpretation of distinct helices in that we
relate a left-hand helix and a right-hand helix with the smaller and larger widths of the middle
frequency, respectively. The top row of figure 2 illustrates how a particular right-handed helix
is generated. In a three-dimensional coordinate system the points (cos(
k), sin(
k), Re(Ek))

with 
1,2,3 = (0◦, 120◦,−120◦) invoke an oriented helix, where 
1,2,3 are the phase angles
of the three eigenvectors associated with the energies E1,2,3. The example on the top row of
figure 2 refers to the case where the width of the middle frequency is the largest, it generates
a right-handed helix. In turn, if the width of the middle frequency is smallest, the helix will
be left handed as illustrated in the bottom row of figure 2.

The similarity between the EP2 and EP3 is the fixed phase relations of the eigenvectors
in the immediate vicinity of the respective singularity. The particular result for the EP3 is of
course related to (4) implying the appealing feature of (12) and (13). We stress that, while
the phase relation of the eigenvectors at an EP2 can only give an orientation in one dimension
and hence cannot provide a genuine chirality, the eigenvectors of an EP3 do provide just that
as their three-dimensionality can be mapped into a three-dimensional coordinate system.

As an aside we note that at an EP2 the phase difference between the two components of
the coalescing eigenfunction is π/2 (recall: for complex symmetric matrices), while at the
EP3 the phases of the three components differ by 2π/3. This means that, in contrast to the
EP2, where only a four-fold loop around the singularity restores the eigenfunctions, at the EP3
the eigenvectors are retrieved after three loops in the λ-plane just like for the corresponding
energies.

Special setting

The all important question is: can a three-fold coalescence be arranged in the laboratory and
are the energies and phases amenable to measurement? One suggestion could be a setting
similar in spirit to the microwave experiment for an EP2 [15] but now with three chambers
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Figure 2. Perspective views of the three-dimensional helix. The right-hand helix at the top row
refers to the width of E2 being larger than the other two, while the left-hand helix at the bottom
row refers to the width of E2 being smaller. The coordinates of the points denoted by ek are
(cos(
k), sin(
k), Re(Ek)) with (
1, 
2, 
3) = (0◦, 120◦,−120◦) for the top and (
1, 
2,


3) = (0◦, −120◦, 120◦) for the bottom row.

in the cavity. Another, perhaps simpler possibility could use electronic circuits as in [16].
Basically, such settings can be simulated by the simple matrix

H =
⎛
⎝e1 s1 s3

s1 e2 s2

s3 s2 e3

⎞
⎠ , (14)

where sj give the couplings and the ej are the (complex) energies. To facilitate matters, we
consider in particular the problem

H0 + λH1 =
⎛
⎝e1 0 s3

0 e2 s2

s3 s2 e3

⎞
⎠ + λ

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ (15)

and choose the couplings s2 and s3 such that H0 has a three-fold coalescence. The choice

s2 = ±
√

− (e1 − 2e2 + e3)3

27(e1 − e2)
, s3 = ±

√
+

(−2e1 + e2 + e3)3

27(e1 − e2)
(16)

achieves this goal with

E(1,2,3)
c = 1

3 (e1 + e2 + e3).
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The perturbation by λ splits the coalescence into three levels and we obtain to the lowest order
(note that here λc = 0)

Ej = Ec +
21/3

√−(−2e1 + e2 + e3)(e1 − 2e2 + e3)

3(e1 − e2)1/3
3
√

|λ| exp(i arg(λ)/3 + 2i(j − 1)π/3)

+ O((λ)2/3), j = 1, 2, 3 (17)

and, using the notation as in (4), the corresponding (unnormalized) eigenvectors are

|ψEP3〉 =

⎛
⎜⎜⎝

√−2e1+e2+e3√
3(e1−e2)

i
√

e1−2e2+e3√
3(e1−e2)

1

⎞
⎟⎟⎠ , (18)

∣∣φj

1

〉 =

⎛
⎜⎜⎝

i21/3
√

e1−2e2+e3√
3(e1−e2)5/6

−21/3
√−2e1+e2+e3√

3(e1−e2)5/6

0

⎞
⎟⎟⎠ exp(i arg(λ)/3 + 2i(j − 1)π/3), (19)

and similar algebraic expressions for the higher orders being of no interest here. We note,
however, that the leading terms of the cj (λ), defined by (11) and given in (12) and (13), are
related to the next order |φ2〉, used in (4), by cj (λ) ∼ 3

√
λ − λc〈ψ̃EP3|φ2〉; the cj (λ) therefore

have the same phase dependence as the
∣∣φj

1

〉
as they are also associated with the first power of

the third root.
The essential point revealed in these explicit expressions is the unambiguous association of

the relative phases exp(2i(j − 1)π/3) in the energies Ej and the corresponding eigenvectors∣∣φj

1

〉
. While the common factor of the energies is some complex number given by the

parameters of the Hamiltonian (15) and arg(λ), we may always choose j = 1 for the energy
with the smallest real part. Once this choice is made, the situation as illustrated in figure 1
naturally emerges. The width (imaginary part) of the second energy of the ordered frequencies
(real parts) determines the sequence of the relative phases exp(±2iπ/3) of the associated
wavefunctions and thus specifies their relative orientation. Depending on whether Im E2

is smallest or largest a left- or right-hand helix is obtained, respectively, as illustrated in
figure 2.

Conclusion

Suppose three coupled damped oscillators are placed in a plane in the form of a triangle and
we look upon that plane. It depends now on the measurements of the frequencies and widths
of the eigenmodes in the vicinity of an EP3 whether we should arrange the oscillators and their
numbering at the corners of the triangle in a clockwise or counterclockwise sense. Once that
arrangement is made according to the relative magnitudes of the widths, the measurement of
the phase sequence of the associated wavefunctions will then confirm the consistency of the
oriented arrangement. A unique and unambiguous orientation is obtained in this way. Apart
from the illustration in figure 2, the time behaviour of the eigenstates can also be viewed like
that of the leads of a technical three-phase current; in fact, the sequence of the three amplitudes
being governed by the time behaviour exp(iωEP3t) follows just the traditional pattern of the
voltage of a three-phase current in one case, and with two phases (leads) interchanged in the
other.

7
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Recall that the single eigenstate |ψEP3〉 does not carry such information. The relevant
phases are found in the part of the eigenstate that is switched on when moving away from the
EP3 in the λ-plane. An experimental verification of this subtle behaviour would thus lead to
a clear chiral characterization in three-dimensional space. We stress that there is no a priori
handedness in an experimental setting as suggested above. There is, however, the direction of
time that provides the various widths of the dissipative system and the time sequence of the
amplitudes mentioned above. In other words, we here suggest that the arrow of time invokes
chirality.

Strictly speaking, the two cases merely distinguish one orientation in three dimensions
from the other, that is the two situations have a genuine and different chirality. Using our
traditional convention for the clockwise motion and left handedness, we associate the larger
or smaller width of the middle frequency with right or left handedness, respectively.
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Appendix

For an N-fold coalescence of eigenvalues, the N levels are connected by a branch point
of Nth order. This follows from the fact that—for an N-dimensional matrix of the form
Hλ = H0 + λH1—the determinant of Hλ − IE vanishes linearly in the variable λ, while the
requirement of N coalescing levels entails an N-fold vanishing in the variable E, that is the
following set of equations is to be satisfied simultaneously:

dk

dEk
det|Hλ − IE| = 0, k = 0, . . . , N − 1.

This is possible only if

E(λ) = Ec +
∞∑

m=1

cm( N
√

λ − λc)
m.

Here the N eigenvalues are given by the values upon the N sheets of the Nth root. We recall
that it is one general characteristic of EPs that the matrix cannot be diagonalized. Rather the
Jordan normal form reads⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Ec 1 0 0
0 Ec 1

. . .
. . . 0
. . . 1

0 0 Ec

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The N eigenstates coalesce likewise into one eigenvector. There is the expansion

|ψ(λ)〉 = |ψEPN 〉 +
∞∑

m=1

|φm〉( N
√

λ − λc)
m.

Note, however, that for the scalar product the following behaviour prevails

〈ψ(λ)|ψEPN 〉 ∼ (λ − λc)
N−1
N

8
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as follows from considering

(E(λ) − Ec)〈ψ(λ)|ψEPN 〉 = 〈ψ(λ)|Hλ − Hλc
|ψEPN 〉

= (λ − λc)〈ψ(λ)|H1|ψEPN 〉.
The right-hand side vanishes linearly when λ → λc, while (E(λ) − Ec) ∼ N

√
λ − λc. Note

that these analytic properties imply the relations

〈ψEPN |φm〉 = 0 for m = 1, . . . , N − 2

and

〈φm|φm′ 〉 = 0 for m + m′ � N − 2.
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